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Rationale: Volatile organic compounds (VOCs) in breath provide biomarkers of tuberculosis (TB) because
Mycobacterium tuberculosis manufactures VOC metabolites that are detectable in the breath of infected
patients.
Objectives:We evaluated breath VOC biomarkers in subjects with active pulmonary TB, using an internet-
linked rapid point-of-care breath test.
Methods: 279 subjects were studied at four centers in three countries, Philippines, UK, and India, and data
was analyzed from 251 (130 active pulmonary TB, 121 controls). A point-of-care system collected and
concentrated breath and air VOCs, and analyzed them with automated thermal desorption, gas chro-
matography, and surface acoustic wave detection. A breath test was completed in 6 min. Chromatograms
were converted to a series of Kovats Index (KI) windows, and biomarkers of active pulmonary TB were
identified by Monte Carlo analysis of KI window alveolar gradients (abundance in breath minus abun-
dance in room air).
Measurements and main results: Multiple Monte Carlo simulations identified eight KI windows as
biomarkers with better than random performance. Four KI windows corresponded with KI values of
VOCs previously identified as biomarkers of pulmonary TB and metabolic products of M. tuberculosis,
principally derivatives of naphthalene, benzene and alkanes. A multivariate predictive algorithm iden-
tified active pulmonary TB with 80% accuracy (area under curve of receiver operating characteristic
curve), sensitivity ¼ 71.2%, and specificity ¼ 72%. Accuracy increased to 84% in age-matched subgroups.
In a population with 5% prevalence, the breath test would identify active pulmonary TB with 98%
negative predictive value and 13% positive predictive value.
Conclusions: A six-minute point-of-care breath test for volatile biomarkers accurately identified subjects
with active pulmonary TB.

� 2012 Elsevier Ltd. All rights reserved.
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An estimated 2 billion people, one third of the world’s pop-
ulation, are infected withMycobacterium tuberculosis.1 Tuberculosis
(TB) remains a leading cause of death from infectious disease, with
an estimated 9.4 million new cases throughout the world every
year.2 Sputum smear microscopy remains the mainstay of diagnosis
in resource-poor countries with a high TB burden, but the low
sensitivity of this test results in patients with smear-negative but
culture-positive pulmonary TB passing undetected through the
health care system.3 The high incidence of smear-negative TB in
patients infected with HIV has further highlighted the clinical need
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for tests for TB that are not only sensitive and specific, but also
rapid, non-invasive, and cost-effective.4

A breath test for volatile organic compounds (VOCs) could
provide a rational test for active pulmonary TB because the caus-
ative organism, M. tuberculosis, manufactures VOC metabolites
in vitro, and a number of these VOCs have been detected in the
breath as apparent biomarkers of infection.5,6 Breath biomarkers
identified active pulmonary tuberculosis (TB) with 85% accuracy in
a multicenter international study employing a breath collection
apparatus (BCA) and VOC analysis with automated thermal
desorption, gas chromatography and mass spectrometry (ATD-GC-
MS).7 Breath testing for active pulmonary TB appears rational and
feasible, but clinical application has been limited by the cost of
ATD-GC-MS and the requirement for highly trained technical staff.

However, recent advances in sensitive and cost-effective analytical
instruments have enabled breath VOC microanalysis at a clinical
point-of-care without the requirement for specialized laboratory
resources.We report here an analytical system thatwas developed for
rapid point-of-care collection and analysis of breath VOCs, and the
evaluationof this systeminamulticenter international studyofbreath
VOC biomarkers in patients with active pulmonary TB.

1. Materials and methods

1.1. Clinical sites

Four tuberculosis treatment centers participated in the study, in
the Philippines (University of Santo-Tomas, Manila, and De La Salle
Health Sciences Institute, Cavite), UK (Homerton University
Hospital, London) and India (Hinduja Hospital, Mumbai & Sir JJ
Group of Hospitals, Mumbai).

1.2. IRB approval and informed consent

An Institutional Review Board (IRB) at each collaborating site
approved the research. All subjects gave their signed informed
consent to participate. Assent from adolescent subjects and consent
from a parent or legal guardian was obtained for subjects 13e16 yr
in England or younger than 18 yr at sites in other countries.

1.3. Human subjects

279 subjects were recruited according to the following criteria:

1.3.1. Control group e inclusion criteria

1. Subject is older than 13 years of age
2. Subject is undergoing screening for pulmonary TB without

clinical evidence of active TB

1.3.2. Exclusion criteria

1. Clinical suspicion of pulmonary TB based on: symptoms and
signs e.g. cough, sputum production, night sweats, weight loss
or hemoptysis

OR: history of known recent exposure to infection
OR: chest X-ray abnormalities consistent with active
pulmonary TB

2. Positive sputum smear test or positive sputum culture.

1.3.3. Disease group e inclusion criteria

1. Subject is older than 13 years of age
2. Clinical suspicion of pulmonary TB based on: symptoms and

signs e.g. cough, sputum production, night sweats, weight loss
or hemoptysis
Please cite this article in press as: Phillips M, et al., Point-of-care breath
(2012), doi:10.1016/j.tube.2012.04.002
OR: history of known recent exposure to infection
OR: chest X-ray abnormalities
OR: positive sputum smear consistent with active pulmonary
TB
OR: sputum culture results positive or pending

1.3.4. Exclusion criteria

1. Subject is currently taking anti-TB therapy or has receivedmore
than 7 days of anti-TB therapy in the past six months

1.4. Point-of-care breath test

The BreathLink system developed for this study comprised three
main components:

1. Breath VOC sample collector and concentrator (BCA): The front
end of the system, the BCA method for collection and
concentration of alveolar breath VOC samples has been
described.7 In summary, a subject wore a nose-clip and
respired normally for 2.0 min, inspiring room air from a valved
mouthpiece, and expiring into a breath reservoir through with
a bacterial filter. The valved mouthpiece and the bacterial filter
were disposed after use. A one-way outlet valve in the
mouthpiece prevented backflow of breath into the mouth, and
the 6-micron bacterial filter blocked transmission of Myco-
bacteria or other microorganisms. The mouthpiece and filter
presented low resistance to expiration, so that subjects could
donate breath samples without effort or discomfort. Alveolar
breath VOCs were pumped from the breath reservoir through
a sorbent trap where they were captured and concentrated.
VOCs in a similar volume of room air were separately collected
and concentrated in the same fashion.

2. Breath VOC analyzer: An analyzer was developed for the
BreathLink system, employing a portable gas chromatograph
coupled to a surface acoustic wave (SAW) detector. The VOC
sample was thermally desorbed from the sorbent trap in
a stream of helium carrier gas and separated on a GC column
with thermal ramping. VOCs were detected with a single non-
functionalized SAW solid-state mass-sensitive detector with
picomolar sensitivity and universal selectivity; the principles
have been reported.8 The analyzer was calibrated daily with an
external standard, a mixture of C6 to C22 n-alkanes (Restek
Corporation, Bellefonte, PA 16823, USA). Each breath test
comprising collection and analysis of separate samples of
breath and room air was completed within 6 min.

3. Control software: Custom software was developed for the
BreathLink system and installed on a secure computer at the
point-of-care where it performed the following functions:
a Control of instrument functions. The software automatically
controlled breath and air sample collections with the BCA,
and analysis with the breath VOC analyzer.

b Electronic Case Report Form (eCRF): Collaborators at clinical
sites entered subject data into an electronic case report form
(eCRF) with a unique identification number. Subject names
were not recorded, except in a separate confidential log
maintained at the clinical site. A menu-driven program pre-
vented collection of a breath sample unless all inclusion and
exclusion criteria were fulfilled. The eCRF comprised demo-
graphic data and clinical information including chest X-ray
reports and results of sputum smear microscopy and culture.

c File storage, encryption, and transmission: Files containing
de-identified chromatographic raw data and eCRFs were
stored locally on the computer, then encrypted and trans-
mitted via the internet to a server at theMenssana Research
test for biomarkers of active pulmonary tuberculosis, Tuberculosis
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Breath Research laboratory in Newark, NJ, USA, where they
were decrypted and stored for analysis. An industry stan-
dard hypertext transfer protocol secure (https) connection
ensured data security.

Instrument detection limit is defined as the analyte concentration
that is required to produce a signal greater than three times the
standard deviation of the noise level9 and was determined for tri-
decane (Sigma Aldrich, St. Louis, MO 63103) serially diluted in
methanol.

1.5. Analysis of data

In summary, the retention time of each chromatographic peak
was normalized according to its Kovats Index (KI) (retention time
relative to known n-alkane standards)10,11 and the chromatogram
was converted into a series of data points by segmenting it into
a series of 100 KI windows. The alveolar gradient of each KI
window (i.e. abundance in alveolar breath minus abundance in
ambient room air) was determined as: alveolar gradient ¼ Vb/
Ib�Va/Ia where Vb ¼ integrated abundance of VOCs in breath
observed with SAW detector, and Ib ¼ area under the curve (AUC)
of the chromatographic peak associated with the external control
standard. Va and Ia were corresponding values observed in the
associated sample of ambient room air. The alveolar gradient
varies with rate of synthesis of a VOC minus its rate of clearance,
so that a positive value indicates that a VOC was synthesized at
a greater rate than it was cleared from the body, and vice versa for
a negative value.12,13

1.6. Identification of biomarkers and construction of predictive
algorithm

MultipleMonte Carlo simulations were employed to identify the
KI windows that identified disease with greater than random
Table 1
Characteristics of human subjects.

Control group

Site No. recruited

Cavite 47
London 17
Manila 52
Mumbai 22
Total 138
Male
Female
Total

Disease group Technical quality of breath test Smear

Site No. recruited Unsatisfactory Satisfactory

Cavite 30 0 30 30
London 3 0 3 1
Manila 60 4 56 56
Mumbai 48 7 41 38
Total 141 11 130 126
Male 86
Female 44
Total 130

Age (yr) Controls

Mean 33.31
SD 13.46

p < 0.0001.
2-tailed t-test.
All subjects with technically unsatisfactory breath test samples were excluded from analy
a positive sputum culture or a positive sputum smear, or a chest X-ray consistent with a
group. **Subjects were included as positive for active pulmonary TB and entered into the
microscopy and/or chest X-ray consistent with active pulmonary TB.
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accuracy. The method has been described.7 In summary, the alve-
olar gradients of all KI windows were compared in the disease and
control groups and ranked as candidate biomarkers according to
their C-statistic values i.e. the AUC of the receiver operating char-
acteristic (ROC) curve.14 The average random behavior of each
chromatographic KI window was determined with multiple Monte
Carlo simulations by randomly assigning subjects to the disease or
control group, and performing 40 estimates of the C-statistic value.
Differences between the C-statistic values obtained with correct
diagnosis and random diagnosis identified the KI windows that
were true biomarkers, because they identified the disease group
with better than random accuracy.15,16 The KI windows identified as
biomarkers of disease were employed to construct a multivariate
predictive algorithm with weighted digital analysis (WDA).17
1.7. Comparison of KI windows to previously reported biomarkers

KI window values were compared to KI values of previously
reported VOC biomarkers of active pulmonary TB5,7 employing
a database maintained by the National Institute of Standards and
Technology (NIST Standard Reference Database Number 69).18 Also,
pure samples of benzene, 1,3,5-trimethyl- and toluene were
analyzed with the BreathScanner GC-SAW.
2. Results

2.1. Human subjects

279 subjects fulfilled recruitment criteria and 251 were entered
into data analysis. Characteristics and exclusions are shown in
Table 1. No adverse effects of the breath test were reported.

Instrument detection limit requirements were fulfilled by 0.1 mL
of 0.1 ppt tridecane solution, which was equivalent to less than
10�12 mol tridecane in a breath sample.
Technical quality of breath test

Unsatisfactory Satisfactory

5 42
4 13
6 46
2 20

17 121
53
68

121

positive Culture-positive Chest X-ray positive Total positive**

30 30 30
3 3 3

55 56 56
7 41 41

96 130 130

Disease group

40.86
16.57

sis. Subjects who were initially recruited to the control group but were found to have
ctive pulmonary TB were transferred to the disease group. Inclusions in the disease
analysis of data if they had a positive sputum culture and/or positive sputum smear

test for biomarkers of active pulmonary tuberculosis, Tuberculosis
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2.2. Identification of KI window biomarkers

Multiple Monte Carlo simulations identified eight chromato-
graphic KI windows as biomarkers with better than random perfor-
mance (Figure 1a). Figure 2 displays KI values of these biomarkers in
controls and in subjects with pulmonary TB in a heatmap of chro-
matographic alveolar gradients. Four KI window biomarkers corre-
sponded with KI values of VOCs previously reported as biomarkers of
pulmonary TB and in vitro metabolites ofM. tuberculosis5e7 (Table 2).

2.2.1. Predictive algorithm and ROC curve
The WDA multivariate predictive algorithm identified active

pulmonary TB with 80% accuracy. Cumulative accuracy of the
algorithm and ROC curve are shown in Figure 1b and c.

2.2.2. Positive and negative predictive values (PPV and NPV)
Figure 1d displays the expected variation of PPV with NPV of the

test in a high-burden setting with 5% prevalence of active
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Figure 1. Analysis of breath VOC data. Top left panel 1a: Monte Carlo identification of signifi
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with 5% prevalence of active pulmonary TB, based on the sensitivity and specificity values

Please cite this article in press as: Phillips M, et al., Point-of-care breath
(2012), doi:10.1016/j.tube.2012.04.002
pulmonary TB, and Figure 3 displays the expected outcome when
a combination of sensitivity and specificity values was selected to
result in NPV ¼ 98%.

2.3. Effect of age on accuracy of predictive algorithm

Patient subsets were selected in the age range 30e65 yr
(controls n ¼ 45, mean ¼ 43.89 yr, SD ¼ 10.9, disease group
n ¼ 72, mean ¼ 46.1 yr, SD ¼ 10.14, 2-tailed t-test p ¼ 0.26, NS).
When the same predictive algorithm was applied to these subsets,
AUC of ROC curve ¼ 0.84.

3. Discussion

The main finding of this study was that a model based on
a point-of-care breath test for volatile biomarkers identified active
pulmonary TB with 80% accuracy overall, increasing to 84% accu-
racy in age-matched subsets. This was consistent with our previous
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Figure 2. Heatmap of chromatographic KI windows. The heatmap displays KI windows in controls (upper panel) and in subjects with active pulmonary TB (lower panel). The
horizontal axis indicates the value of each KI window. The color of each KI window varied on a scale from one to ten (scale shown at right). The scale was calculated for each KI
window by dividing the range between the highest and lowest observed value of the alveolar gradient into ten equal parts. Vertical black lines with adjacent numbered arrows
indicate eight KI windows that were identified as biomarkers of active pulmonary TB because they were predominantly darker in the controls than in active pulmonary TB, or vice
versa, and multiple Monte Carlo simulations identified these differences in alveolar gradient as greater than predicted by chance alone. The KI windows indicated with green arrows
corresponded with the KI values of VOCs previously reported as biomarkers of active pulmonary TB and metabolic products of Mycobacterium tuberculosis (see Table 2).
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report of a laboratory-based assay for breath biomarkers that
identified active pulmonary TB with 85% accuracy.7 Four KI
windows corresponded with KI values of VOCs previously identi-
fied as breath biomarkers of pulmonary TB and metabolic products
of M. tuberculosis, principally derivatives of naphthalene, benzene
and alkanes.5e7 This correspondence provides presumptive
evidence from two independent clinical studies that these breath
VOCs are biomarkers of active pulmonary TB.

This study also provided proof of concept that breath
biomarkers identified in the laboratory with advanced analytical
instruments may be successfully identified with a point-of-care
system employing a faster and less expensive instrument plat-
form. In practice, the rapid point-of-care breath test combined with
internet transmission of clinical and chromatographic data was
convenient and effective. Clinical sites in countries widely
Table 2
Correspondence between biomarkers of active pulmonary TB.

Biomarker
number

KI window Breath biomarker VOCs

1 & 2 965e1030 camphene; l-beta-pinene; benzene, 1,
3 & 4 1243e1313 naphthalene,1-methyl-; tridecane; 1-o

The point-of-care breath test identified a group of KI windows as biomarkers of active pu
VOCs previously identified as breath biomarkers of active pulmonary TB, or VOC product
the KI windows indicated by green arrows 1, 2, 3 and 4 in the heatmap (Figure 2). Based o
evidence, though not definitive proof, that the listed VOCs are similar to those identified i
Number 69.18 GC-SAW analysis of pure samples of benzene, 1,3,5-trimethyl- and toluene
window may have arisen from their coelution in a single peak in the gas chromatogram.
previous reports.5e7 These differences may have arisen in part from differences in expe
parameters and instrumentation employed with the rapid point-of-care ATD-GC-SAWusi
values for breath VOCs compared to the much slower assays with laboratory-based ATD

Please cite this article in press as: Phillips M, et al., Point-of-care breath
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separated by geography were able to complete a subject’s breath
test in a standardized fashion in 6 min, and pool their data
promptly.

The biological origins of breath VOC biomarkers of active
pulmonary TB were consistent with metabolic products derived
from the infective organism, the host, or both. M. tuberculosis
manufactures a spectrum of VOCs in vitro, including methylated
derivatives of n-alkanes, naphthalene and benzene.5,6 The meta-
bolic source of these products and their biological significance are
unknown.

Infection of the host with TB causes increased oxidative stress,
which can result in increased excretion of n-alkanes and their
derivatives in the breath.19e21 The heatmap (Figure 2) demon-
strates that different VOCs in the biomarker KI windows were
either increased or decreased in abundance in active pulmonary TB.
Mycobacterium tuberculosis
in vitro VOCs

3,5-trimethyl- heptane,2,2,4,6,6-pentamethyl-
ctanol, 2-butyl; dodecane, 4-methyl naphthalene, 1-methyl-

lmonary TB (Figure 2). Four of these KI windows corresponded with the KI values of
s of M. tuberculosis in vitro.5e7 Biomarkers 1, 2, 3 and 4 in this table correspond with
n their chromatographic retention times, this correspondence provides presumptive
n the heatmap. KI values were obtained from the NIST Standard Reference Database
yielded similar KI values. The presence of more than one candidate VOC in a single KI
The VOC biomarkers listed above are similar, but not identical to those identified in
rimental design, diagnostic criteria and assay methodology. In particular, the assay
ng a short 1M columnwould be expected to yield different selectivity and sensitivity
-GC-MS using a 30 M column.

test for biomarkers of active pulmonary tuberculosis, Tuberculosis



Figure 3. Predicted outcome of breath test for active pulmonary TB: A specified target value of NPV or PPV may be achieved by selecting a cutoff point on the ROC curve (Figure 1)
with an appropriate combination of sensitivity and specificity. In this example, breath testing could achieve a desired target value of NPV ¼ 98% in a population of 10,000 people
with a high (5%) prevalence of active pulmonary TB by selecting a cutoff point on the ROC curve where sensitivity ¼ 71% and specificity ¼ 75%.
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Decreased abundance of breath VOCs may have resulted from
M. tuberculosis catabolizing human metabolic products as nutri-
ents. This hypothesis is consistent withmycobacterial catabolism of
other host-derived nutrients including carbohydrates, amino acids,
phosphate, and cholesterol,22,23 as well as with reports that
alkanes, alkane derivatives or benzene derivatives can all sustain
mycobacterial growth as nutritional substrates.24e26The potential
clinical utility of the point-of-care breath test for active pulmonary
TB may be estimated from its positive and negative predictive
values, which will vary with the prevalence of disease in the study
population. Figure 1 displays the expected values of PPV and NPV in
a population with a high prevalence of active pulmonary TB. In the
example shown in Figure 3, an NPV of 98% was associated with
a PPV of 13%.When the NPVwas increased to 99%, the PPV declined
to 10.1%. These findings illustrate a conundrum that public health
physicians frequently encounter when planning to screen a large
population for a disease: PPV increases as NPV decreases, and vice
versa. The choice of a test cutoff point affects costs as well as patient
benefits. Ideally the NPV should be set as high as possible in order
to minimize the number of infected persons who test as false-
negatives and whose disease goes undetected. However, the PPV
should also be set as high as possible in order to minimize themuch
larger number of non-infected persons who test as false-positives,
and who might potentially overwhelm the health care system. In
practice, breath testing might be employed in resource-poor envi-
ronments as a cost-effective first step in a two-stage evaluation
process: Subjects with a negative test result could be reassured that
they not have active pulmonary TB with 98% certainty, so that no
further testing is necessary, while those with a positive test result
could be referred for more costly evaluation with sputum culture
and nucleic acid amplification testing (NAAT). Although costs have
not yet been determined, a rapid point-of-care breath test would
probably cost significantly less than sputum culture or NAAT
because neither sputum collection nor expensive reagents are
required.

Historically, most advances in breath testing resulted from
innovation in analytical technology. The invention of chemical
colorimetry in the 19th century enabled Anstie to develop the first
breath test for alcohol in 1874.27 Nearly 100 years later, advances in
gas chromatography enabled Linus Pauling to discover large
numbers of low-molecular weight VOCs in concentrated human
Please cite this article in press as: Phillips M, et al., Point-of-care breath
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breath28 Subsequent research has identified more than 3000
different VOCs in human breath,29 and demonstrated breath VOC
biomarkers in diseases including lung cancer17 and breast cancer.30

Tests employing array technologies have also been proposed to
identify lung cancer and other diseases based on their response to
a unique pattern of breath VOCs31,32; their advantage is simplicity
because they do not employ GC separation of VOCs, however their
disadvantage is that they do not identify or quantify specific VOCs
in a breath sample. Recent advances in ATD-GC-SAW now enable
breath testing at the clinical point-of-care with sensitivity compa-
rable to laboratory-based ATD-GC-MS, but with instruments that
are smaller, faster, less expensive, and simpler to operate. A
laboratory-based ATD-GC-MS fully equipped for breath VOC anal-
ysis currently costs nearly $200,000, while a point-of-care ATD-GC-
SAW costs only one-tenth asmuch. Analysis of a breath VOC sample
with laboratory-based ATD-GC-MS employing a 30 M column may
require 60 min of instrument time, while the point-of-care ATD-
GC-SAW employed in this study analyzed breath VOC samples in
less than one-tenth the time. Despite the disadvantages of lower
selectivity and the lack of MS identification of breath VOCs, the
point-of-care ATD-GC-SAW instrument delivered diagnostic
sensitivity and specificity for active pulmonary TB that was
comparable to laboratory-based ATD-GC-MS. This finding illus-
trates that laboratory-based and point-of-care analytical technol-
ogies may be complementary rather than competitive.

Although sputum culture is commonly employed as the gold
standard of diagnosis of active pulmonary TB, the test is frequently
inaccurate. Published reports of its accuracy vary widely, with
sensitivity ranging between 40 and 81.5% and specificity between
85 and 98.4%.33e35 In resource-limited settings, TB is often diag-
nosed with high accuracy by non-physicians based on acid-fast
bacilli smear, chest X-ray, and clinical history. TB frequently pres-
ents a complex diagnostic problem in which different tests
contribute important information to clinical risk assessment.36,37

For this reason, we ranked subjects as positive for active pulmo-
nary TB if they had positive sputum culture and/or positive sputum
smear microscopy and/or chest X-ray consistent with active
pulmonary TB. The diagnostic criteria employed in this study may
have introduced a potential source of error, because the observed
accuracy of a biomarker cannot exceed the accuracy of the diag-
nostic gold standard to which it is compared. This may be
test for biomarkers of active pulmonary tuberculosis, Tuberculosis
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illustrated by considering a hypothetical Biomarker X that is 100%
accurate. In a clinical study, all subjects with disease will test
positive for Biomarker X. However, an imperfect gold standard will
generate some false-negatives, so the positive test results from
Biomarker X in these subjects will be scored as false-positives, even
though they were correct in reality. Similarly, false-positive results
with the imperfect gold standard will be scored as false-negatives
for Biomarker X. Consequently, the observed total number of
false-positives and false-negatives will be the same for both the
imperfect gold standard and for Biomarker X, so that the observed
accuracy of Biomarker X will underestimate its true value. Conse-
quently, the 80% accuracy of the breath test for active pulmonary TB
observed in this study may have been an underestimate of its true
value.

We conclude that this is the first report of a rapid point-of-care
breath test for VOCs exhaled in picomolar concentrations, and that
this test detected volatile biomarkers of active pulmonary TB
consistent with biomarkers previously reported using laboratory-
based instrumentation. The point-of-care breath test was rapid,
accurate, and cost-effective, and could potentially provide a clini-
cally valuable new tool for detection of active pulmonary TB.
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