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Background: A combination of biomarkers in a multivariate model may predict disease with greater accuracy
than a single biomarker employed alone. We developed a non-linear method of multivariate analysis,
weighted digital analysis (WDA), and evaluated its ability to predict lung cancer employing volatile
biomarkers in the breath.

Methods: WDA generates a discriminant function to predict membership in disease vs no disease groups by
determining weight, a cutoff value, and a sign for each predictor variable employed in the model. The weight
of each predictor variable was the area under the curve (AUC) of the receiver operating characteristic (ROC)
curve minus a fixed offset of 0.55, where the AUC was obtained by employing that predictor variable alone, as
the sole marker of disease. The sign (±) was used to invert the predictor variable if a lower value indicated a
higher probability of disease. When employed to predict the presence of a disease in a particular patient, the
discriminant function was determined as the sum of the weights of all predictor variables that exceeded their
cutoff values. The algorithm that generates the discriminant function is deterministic because parameters are
calculated from each individual predictor variable without any optimization or adjustment. We employed
WDA to re-evaluate data from a recent study of breath biomarkers of lung cancer, comprising the volatile
organic compounds (VOCs) in the alveolar breath of 193 subjects with primary lung cancer and 211 controls
with a negative chest CT.

Results: TheWDA discriminant function accurately identified patients with lung cancer in amodel employing
30 breath VOCs (ROC curve AUC=0.90; sensitivity=84.5%, specificity=81.0%). These results were superior to
multilinear regression analysis of the same data set (AUC=0.74, sensitivity=68.4, specificity=73.5%). WDA test
accuracy did not vary appreciably with TNM (tumor, node, metastasis) stage of disease, and results were not
affected by tobacco smoking (ROC curve AUC=0.92 in current smokers, 0.90 in former smokers). WDA was a
robust predictor of lung cancer: random removal of 1/3 of the VOCs did not reduce the AUC of the ROC curve
by N10% (99.7% CI).

Conclusions: A test employing WDA of breath VOCs predicted lung cancer with accuracy similar to chest
computed tomography. The algorithm identified dependencies that were not apparent with traditional linear
methods. WDA appears to provide a useful new technique for non-linear multivariate analysis of data.

© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Most diagnostic classifications are binary e.g., dead or alive, disease
or no disease, cancer or no cancer. The physician's task is to correctly
assign a patient to one group or the other by applying generally ac-
cepted criteria of membership. This presents little difficulty if the
difference between the two groups is defined by a single criterion that
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can be readily estimated e.g., hypoglycemia can be distinguished from
normoglycemia by measuring the blood glucose concentration, and
then determining whether it is above or below a designated cutoff
value. However, clinical diagnosis is usually more difficult because
assignment to one group or the other generally requires a combination
of several different criteria. For example, a patient with acute strep-
tococcal pneumoniamay presentwith several different symptoms and
signs, including fever, chills, productive cough, herpes labialis, vocal
fremitus, and localized crackles in the chest. As an additional com-
plication, not all of these features are required for the diagnosis, and
some aremore important than others. An experienced physician takes
these difficulties into account by intuitively assigning a different
diagnostic weight to each finding. For example, fever has a compara-
tively low diagnostic weight because it may be absent in elderly or
immune suppressed patients, but the diagnostic weight of chest

crackles ismuchhigher. This process of intuitivelyweighing all of these
relative values and then incorporating them into a binary prediction is
often described as “diagnostic clinical judgment”.

Since the exercise of diagnostic clinical judgment is an intuitive
process, its outcome must necessarily vary with an individual's
skill and experience. As a consequence, physicians have sought to
improve the accuracy and reproducibility of clinical judgment by
employing formal algorithms to assign patients to appropriate
diagnostic groups. As early as 1944, Jones proposed an algorithm
for the diagnosis of rheumatic fever that employed a combination of
“high weight” major criteria (including carditis and polyarthritis)
and “low weight” minor criteria (including fever and arthralgia). As
evidence of its clinical value, a modified version of this algorithm is
still in clinical use N60 y later [1]. The accuracy and reproducibility of
diagnostic laboratory tests can also be improved in the same fashion.
A predictive algorithm employing the relative diagnostic weights of
two or more biomarkers of lung cancer in combination can predict
disease with greater accuracy than a single biomarker employed
alone [2].

Non-linear multivariate statistical analysis provides a useful tool
for determining the relative weights of clinical markers of disease and
incorporating them into new diagnostic algorithms. We have pre-
viously reported that biomarkers in the breath predict lung cancer
[3,4], breast cancer [5], pulmonary tuberculosis [6], and heart trans-
plant rejection [7]. All of these tests assigned a relative weight to a
number of different biomarkers – volatile organic compounds (VOCs)
in the breath – and incorporated them into a predictive algorithmwith
a binary outcome i.e. disease or no disease. A non-linear multivariate
model employing fuzzy logic predicted lung cancer with greater
accuracy than multilinear analysis [8].

We report here a new method for non-linear modeling. Weighted
digital analysis (WDA) determines the relativeweights of a set of VOCs
as biomarkers of disease, and incorporates them into an algorithm to
predict the presence or absence of disease. We present evidence for

Fig. 1. Accuracy of a single breath VOC employed as a biomarker of lung cancer. Upper
panel: distribution of alveolar gradients of isopropyl alcohol in lung cancer patients and
in controls. The sensitivity and the specificity of this VOC as a biomarker of lung cancer
varies with the cutoff value at different points along the x-axis. Lower panel: the
receiver operating characteristic (ROC) curve derived from the sensitivity and the
specificity observed at different cutoff values along the x-axis. For isopropyl alcohol in
breath, the AUC of the ROC curve was 0.68, indicating that it was a modestly accurate
biomarker of lung cancer when employed alone.

Fig. 2. Effect of random patient assignment on predictive accuracy. All breath VOCs
were evaluated as biomarkers of lung cancer employing themethod shown in Fig.1. The
AUC of each ROC curve is displayed employing the correct cancer/control assignment
(y-axis) vs random assignment to the cancer or the control group (x-axis). This figure
demonstrates the difference between the 2 distributions: when the diagnosis was
randomly assigned, no VOC ROC curve had an individual AUC of ≥0.6. However, when
the diagnosis was correctly assigned, 69 VOCs had a ROC curve AUC N0.6, and these
VOCs were selected as the best biomarkers of lung cancer.
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the effectiveness of WDA in a reanalysis of data obtained from a
previous study of breath VOC biomarkers of lung cancer.

2. Methods

2.1. Clinical study

This has been previously reported [8]. In summary, breath samples were collected
from 404 patients: 193 with untreated primary lung cancer and 211 controls with no
evidence of cancer on chest CT. VOCs in alveolar breath and ambient air were analyzed
by gas chromatography andmass spectroscopy. The data set comprised the breath VOCs
in patients with untreated primary lung cancer and the controls.

2.2. Determination of alveolar gradients

The alveolar gradient is the difference between the abundance of a VOC in breath
and air, and the method for its determination has been described [9].

2.3. General principles of WDA

WDA is a mathematical method for developing a diagnostic algorithm that
generates a discriminatory function score. The value of this score predicts member-
ship in 1 of 2 groups e.g., disease or no disease. Every diagnostic variable (e.g., the
numerical value of a laboratory test result) that is employed in the algorithm has
three parameters.

a. Sign. This may be positive (+1) or negative (−1). If the sign is positive, a higher value
of the diagnostic variable indicates that disease is more likely. Conversely, if its sign
is negative, a lower value of the variable indicates that disease is more likely.

b. Weight. This value indicates the relative contribution of each diagnostic variable to
the discriminatory function, i.e. the higher its weight, the greater is its relative
importance as a predictor of disease.

c. Cutoff value. This determines whether or not a diagnostic variable contributes to the
discriminatory function score. The contribution of a diagnostic variable (weight) is

added to the discriminatory function score only if that value exceeds the cutoff
value.

For each variable, the value of (gradient X sign) is determined, and if it exceeds
the (cutoff X sign) value, the weight is added to the discriminatory function score.
The discriminatory function score (df) for a given patient (subscript i) is calculated
as:

df i ¼
P

c yic with yic ¼ Weightc if xic ⁎ Signc NCutof f c⁎ Signc

0 otherwise

�

The subscript c incorporates all contributing VOCs.
The alveolar gradient of each VOC was employed to create a receiver operating

characteristic (ROC) curve, demonstrating its ability to distinguish cancer patients from
controls. As an example, the ROC curve for a breath VOC tentatively identified as isopropyl
alcohol is shown inFig.1. FromthisROCcurve, the areaunder curve (AUC), sign (−1 ifAUC is
b0.5, +1 if AUC isN =0.5), and cutoff valueC of the alveolar gradientwhere [sensitivity+(1−
specificity)] is a maximumwere determined. This enables the determination of the cutoff
(C), weight=(Abs(AUC−0.5)+0.5) −0.55, and sign=−1 if AUC is b0.5; +1 if AUC is N =0.5.
TheWDAalgorithmmay be readilyemployed in a computerized spreadsheet program. It is
currently implemented as a macro in Microsoft Excel.

2.4. Selection of VOCs for inclusion in WDA

ROC curves were determined in this fashion for all breath VOCs, and only those
VOCs with weight N0.6 were selected for further analysis. Breath VOCs were edited to
combine duplicates i.e. ROC curves were constructed from the discriminatory function
generated by employing all of the predictor variables in the model.

2.5. Robustness of the model

We defined robustness as the number of breath VOCs that may be lost from the
model without incurring a significant deterioration in its predictive accuracy. In this
context, a “lost” VOC is either absent or else it is generating random results. We

Table 1
Major VOC identifiers of primary lung cancer in breath

WDA selected these 30 breath VOCs as candidate biomarkers of primary lung cancer because the AUC of each ROC curve exceeded 0.6. VOCs are ranked by their chromatographic
retention times. CAS and NIST numbers are shown, where available. N/A = not available. In a previous report [8], fuzzy logic selected a different set of lung cancer biomarkers from the
same data set, possibly reflecting that fuzzy logic andWDA are fundamentally different techniques of multivariate analysis. Two sets of duplicate VOCs were identified in this list (10,
11 and 12, 13, highlighted). This was a consequence of the mass spectra library assigning different synonyms (with different CAS and NIST numbers) to the same VOC on different
occasions. This did not affect the outcome of multivariate analysis with WDA.

Table 1
Major VOC identifiers of primary lung cancer in breath

WDA selected these 30 breath VOCs as candidate biomarkers of primary lung cancer because the AUC of each ROC curve exceeded 0.6. VOCs are ranked by their chromatographic
retention times. CAS and NIST numbers are shown, where available. N/A = not available. In a previous report [8], fuzzy logic selected a different set of lung cancer biomarkers from
the same data set, possibly reflecting that fuzzy logic andWDA are fundamentally different techniques of multivariate analysis. Two sets of duplicate VOCs were identified in this list
(10, 11 and 12, 13, highlighted). This was a consequence of the mass spectra library assigning different synonyms (with different CAS and NIST numbers) to the same VOC on
different occasions. This did not affect the outcome of multivariate analysis with WDA.
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employed the following algorithm to evaluate robustness: select the candidate VOCs in
the model, rank these VOCs by AUC of the ROC curve:

1. Determine their cumulative AUC.
2. Randomly remove one VOC at a time until the cumulative AUC falls below 90% of

the original value.
3. Repeat this step n (e.g., 30) times.
4. The average number of removed VOCs is termed the robustness for 10%

degradation.

2.6. Detection of lung cancer

We employed WDA to analyze alveolar gradients of breath VOCs in the entire data
set of 404 subjects (untreated primary lung cancer and cancer-free controls) employing
the method described above. In addition, we cross-validated algorithms in randomly
split subset groups [10]. Subjects were randomly assigned to a training set or to a
prediction set in a 2:1 ratio. WDAwas performed employing multiple (n=20) randomly
selected unique training and prediction sets.

3. Results

3.1. Candidate biomarkers of lung cancer

Fig.1 displays the accuracy of a typical single breath VOC employed
as a biomarker of lung cancer. Note that this VOC alone did not
significantly distinguish between cancer patients and the control
group; it required the combined results of several VOCs to generate a
discriminant function with a significant AUC value. Fig. 2 displays the
effect of random patient assignment on predictive accuracy of
individual breath VOCs, and how these results were employed to
identify the optimal candidate biomarkers of lung cancer, with AUC of
ROC curve N0.6. This cutoff value was employed because no VOC had
an AUC N0.6 when the diagnosis was randomly assigned (Table 1).

3.2. WDA discriminatory function in all cases of lung cancer

Fig. 3 displays WDA discriminatory function values in controls
and lung cancer patients. The area under curve (AUC) of the resulting
receiver operating characteristic (ROC) curve was 0.90. Employing
multilinear regression of the same data set, AUC of ROC curve=0.74.

3.3. WDA discriminatory function in lung cancer stratified by TNM
(tumor, node, metastasis) stage

Fig. 3 displays mean discriminatory function values in controls and
lung cancer patients stratified by TNM stages 1 to 4. Fig. 4 displays the
ROC curves obtained from these data. Test accuracy did not vary
appreciably with TNM stage of disease.

3.4. WDA discriminatory function in lung cancer stratified by tobacco
smoking

Fig. 5 displays the ROC curves obtained when WDA data in Fig. 3
was stratified according to whether subjects were current smokers
(AUC=0.92) or former smokers (AUC=0.90). By inspection, the simi-
larity of the two ROC curves demonstrated that the WDA discrimi-
natory function was not affected by whether subjects were current
smokers or ex-smokers.

3.5. Effect of the number of VOCs in model on WDA discriminatory
function

Fig. 6 displays the effect of the number of VOCs employed in the
model on theAUCof theROC curve for all patientswith lung cancer. VOC
biomarkers of lung cancer shown in Table 1 were added to the model
one by one, commencing with the highest weight VOC. The WDA
discriminatory function required only ten VOCs in order to identify lung
cancerwith nearmaximal accuracy. However,more VOCswere added to
the algorithm in order to enhance the robustness of the analysis.

3.6. Cross validation in random split subsets

Fig. 7 displays the training and validation ROC curves (mean of 20
random splits). The same 30 VOCs employed in the final model were
also employed in these split data sets; however the cutoff points,
signs, and weight, were adjusted for each split based on the results in
their respective training sets.

3.7. Robustness of the model

Fig. 8 displays variation in the robustness with the number of VOCs
in the model, as well as “robustness −3 Sigma”, which indicates the
number of VOCs that can be lost with 99.7% probability the AUC will
not degrade by N10%. If, for example, the model employed 30 VOCs, a
third of these VOCs could be lost without reducing the accuracy of the
breath test by N10% at 99.7% CI.

Fig. 3. WDA discriminatory function scores in lung cancer and controls. Upper panel:
This histogram displays the distribution of discriminatory function scores in the 2
groups. Lower panel: Mean discriminatory function scores in controls and patients
with lung cancer stratified by TNM stage of disease. TNM staging information was
available for 166/193 patients with lung cancer. Mean discriminatory function scores
were 2.36 (SD=0.47)) in all stages of lung cancer, and 1.30 (SD=0.64)) in controls
(pb10−4, 2 tailed t-test). (Since the overall AUC of the total set is high (around 0.9) it is
to be expected that the AUC of any of the subsets stratified by TNM stage will have a
similarly high value.)
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3.8. Effect of random assignment of diagnosis

Fig. 7 (lower panel) displays the effect of random reversal of
assignment of patient diagnosis, prior to determination of the WDA
discriminatory function scores. The accuracy of the WDA model
progressively deteriorated with the declining integrity of the breath
VOC data, supporting the conclusion that the undegraded WDA
model identified lung cancer by extracting a signal of disease from
the breath VOC data.

4. Discussion

A test employing WDA of a combination of breath VOCs
accurately identified patients with lung cancer. The accuracy of the
breath test may be directly compared to that of chest CT. In a large
population screening study, chest CT detected lung cancer with 55%
sensitivity and 95% specificity [11]. As the ROC curve in Fig. 4
demonstrates, at the point where the breath test sensitivity was
55%, its specificity was approximately 93% i.e. close to the same as
chest CT.

Table 1 lists the breath VOCs identified as candidate biomarkers
of primary lung cancer. Although we observed a strong statistical
association between lung cancer and a set of apparent VOC
biomarkers in the breath, the biological mechanism linking lung

cancer with these breath VOCs has not yet been identified with
certainty. Tumor markers are conventionally regarded as downstream
products that aremanufactured in cancer cells and discharged into the
blood. Examples include CA125 in ovarian cancer, PSA in prostate
cancer and CEA in ovarian and breast cancers. However, we have
previously described four important points of difference between
typical downstream tumor markers and breath VOC biomarkers of lung
cancer [8].

4.1. Biological significance and variation

Few of the breath VOCs associated with lung cancer have known
biological significance in lung disease. Also, the set of breath VOCs
associated with lung cancer has been found to vary from study to
study, and also within an individual study when different techniques
of multivariate analysis were employed.

4.2. Effect of tumor mass

Serum levels of a tumor marker may increase as a tumor grows
larger [13]. However, tumor mass did not affect the abundance of
breath VOC biomarkers of lung cancer; these remained relatively
constant, as shown by the similarity of ROC curves in TNM stages 1
through 4 (Fig. 4).

Fig. 4. Breath biomarkers of lung cancer stratified by TNM stage: These figures display the ROC curves obtained by stratifying the WDA data in Fig. 4 according to the TNM stage of
lung cancer. The AUCwas high in TNM1 lung cancer, and a similar performance was maintained at all other stages. (Since the overall AUC of the total set is high (around 0.9) it is to be
expected that the AUC of any of the subsets stratified by TNM stage will have a similarly high value.)
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4.3. Effect of surgery

Ablation of the prostate reduces serum levels of PSA [14], and
concentrations of serum tumor marker are generally reduced by ex-
cision of the cancer. However, we previously reported that the out-
come of the breath test was unchanged in most patients with lung
cancer following thoracotomy with resection of the tumor.

4.4. Abundance

Serum tumor markers are consistently increased in patients with
cancer; however, we observed a combination of decreased as well as
increased abundance of breath VOC biomarkers in lung cancer.

For these reasons, we concluded that the downstream model
of tumormarker production did not provide a satisfactory explanation
of the observed breath VOC biomarkers of lung cancer. We therefore
proposed an alternative biological mechanism: an upstream model
hypothesis, in which the pathophysiologic process that results in lung

cancer may also modulate the abundance of VOCs in breath, so
that carcinogenesis and altered breath VOCs are 2 concurrent but
independent phenomena. Fig. 8 displays a pathophysiologic hypoth-
esis in which activation of lethal cytochrome p450 mixed oxidases
may lead to lung cancer while independently altering the catabolism
of VOCs. This model provides a rational explanation for the observed
points of difference described above:

4.5. Biological significance and variation

More than 3000 different VOCs have been observed in nor-
mal human breath [9], all of them with low molecular weights
(b600), unlike protein serum tumor markers which have molecular
weights of several kilodaltons [15,16]. Induced cytochrome p450

Fig. 5. Breath biomarkers of lung cancer stratified by tobacco smoking: These figures
display the ROC curves obtained by stratifying the WDA data in Fig. 4 according to
whether subjects were current smokers (upper panel; AUC=0.92 or former smokers
(lower panel; AUC=0.90), demonstrating that the WDA discriminatory function scores
were not skewed by current smoking or a history of smoking.

Fig. 6. Effect of the number of VOCs on model performance, and cross validation in
random split subsets. Upper panel: The accuracy of the breath test varied with the
number of VOCs employed in the model. VOC biomarkers of lung cancer were added to
the model one by one, commencing with the highest weight VOC. This figure
demonstrates that the breath test identified lung cancer with near maximal accuracy
with only 10 VOCs. Lower panel: Mean ROC curves of breath test results employing the
same 30 VOCs in 20 random split data sets into a training set and a test set in a 2:1 ratio.
The cutoff points, signs, and weight, were adjusted for each split based on the results in
their respective training sets.
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mixed oxidase activity could potentially modulate the catabolism
of many of these breath VOCs, and thereby account for the large
and diverse sets of candidate breath biomarkers associated with
lung cancer. Cytochrome p450 enzymes catabolize most of the
VOCs listed in Table 1, including isopropyl alcohol [17], hexane-
dione [18], camphor [19], benzophenone [20] and derivatives of
tetroxane [21], benzene [22], benzoic acid [23], furan [24] and
ionone [25] (this list is not exhaustive). The resulting diversity
of candidate biomarkers constitutes a major strength of breath
testing for lung cancer, since it ensures redundancy and robust-
ness of the predictive algorithm. As Fig. 7 demonstrates, several of
these VOCs can be removed from the model without any signifi-
cant degradation of the accuracy of the test as a predictor of lung
cancer.

4.6. Effects of tumor mass and surgery

The model shown in Fig. 8 predicts that tumor mass will have no
effect on breath biomarkers of lung cancer, since induction of
cytochrome p450 activity would alter the composition of breath
VOCs independently of the growth of lung cancer cells. Similarly,
resection of the lung cancer should have no effect on the breath
signal.

4.7. Effects on breath VOC abundance

This model predicts a combination of decreased as well as in-
creased abundance of breath VOC, since VOC precursors will be de-
pleted by catabolism, while their metabolites will be increased.

Table 2 lists the advantages of WDA compared to traditional
multilinear analysis, and newer methods of multivariate data analysis
such as fuzzy logic, pattern recognition, or neural networks. WDA
identified a set of VOC biomarkers of lung cancer that were similar,
though not identical, to those identified in a previous study employing
fuzzy logic analysis of data [8]. Other results were also similar to those
previously reported [8]. The accuracy of the breath test was not
affected by the TNM stage of lung cancer, nor by current or former
tobacco smoking.

There are risks as well as benefits to adding more variables to a
multivariate predictive algorithm. While the main benefit is improved
accuracy of the algorithm, the risk is that some of this improvement
may be illusory, because the inclusion of variables with poorer cor-
relations can degrade predictive accuracy. Consequently, the num-
ber of variables in an algorithm is usually a compromise between two
conflicting demands: there must be a sufficient number to ensure ac-
curacy, yet not somanyas to introduce spurious results.We identified69
candidate VOC biomarkers of lung cancer in the breath (Fig. 2), and then
ranked them according to the AUC of their ROC curves. We selected the
top 30 VOCs for inclusion in the predictive algorithm based solely on
their AUC values, without any knowledge or consideration of their
potential biological significance. This approach yielded three main
advantages:first, the algorithmwashighly sensitive and specific for lung
cancer – the AUC of the ROC curve was close to 0.9 (Fig. 6, upper panel).
Second, there was no evidence of spurious results caused by poorly
correlated variables because the cross-validated ROC curve exhibited
virtually nodegradation (Fig. 6, lower panel). Third, theWDAmodelwas
highly robust. When one third of the VOCs were randomly removed
from a 30 VOC model, the accuracy of the breath test was degraded by
less than 10% at the 99.7% confidence level (Fig. 7, upper panel). This
provides evidence for high redundancy in breath testing for lung cancer:
Even when part of the information in the breath VOC signal was
unavailable, the WDA model delivered highly accurate information
about the presence or absence of disease.

The weight of each predictor variable was the area under the curve
(AUC) of its receiver operating characteristic (ROC) curve. We em-
ployed only VOCs with AUCN=0.6, and subtracted a fixed offset of 0.55
from these values in order to increase the relative differences between
them. For example, if VOC1 AUC=0.6 and VOC2 AUC=0.65, then VOC2
has approximately 10% higher weight without subtraction. However,
with subtraction of 0.55, the relative AUC of VOC2 to VOC1 is doubled.
Most of the AUCs in this data set fell between 0.6 and 0.7, so that
their relative differences were markedly increased by this procedure.
In practice, employment of this arbitrary offset was justified by the
improvement in the resulting discriminant function.

Lung cancer causes more deaths than any other malignancy in the
U.S. [26]. Since annual screening with chest computed tomography
(CT) can detect early stage lung cancer that is likely to be curable [27],
there is hope that early detection could increase 5-y survival. How-
ever, chest CT screening is costly and the hazards of associated ra-
diation may outweigh its potential benefits [28]. These concerns have
led researchers to seek biomarkers of lung cancer that could provide

Fig. 7. Robustness of theWDAmodel and effect of random diagnosis assignment: Upper
panel: This figure displays “robustness” vs the number of VOCs included in the analysis.
Robustness is defined by the number of VOCs that can be removed on average without
degrading the AUC of the ROC curve by N10%. The value is derived by removing
randomly selected VOCs from the analysis until the AUC drops by 10%. The line
“Robustness −3 Sigma” indicates the number of VOCs that can be lost so that with 99.7%
probability the AUC will not degrade by N10%. When the WDA analysis included 30
VOCs (arrow), the value of “Robustness −3 Sigma”was approximately 10. This indicates
that a third of the VOCs could be lost from the model without reducing its accuracy by
N10% at the 99.7% confidence level. In this context “lost”means that the VOCs were not
present in a patient's breath sample or in the room air. Lower panel: This figure displays
the effect of the fraction of patients randomized on the AUC of the ROC curve.
Assignment of patients to the cancer or the control group was randomized prior to
determination of the WDA discriminatory function scores. The accuracy of the WDA
model progressively deterioratedwith the addition of random classifiers: the AUC of the
ROC curve degraded approximately 4% for every 10% of random classifier changes. This
supports the conclusion that the undegradedWDAmodel extracted a lung cancer signal
from breath VOCs, because the accuracy of detection fell with the declining integrity of
the signal.
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an early warning of potentially curable disease. However, evidence
from randomized trials is not yet available concerning morbidity and
mortality following early detection of lung cancer. Screening for lung
cancer with the breath test employing theWDA algorithm reported in
this study could provide an early warning test that is safe, accurate,
non-invasive, rapid, simple, and inexpensive.

WDA appears to provide a useful new technique for non-linear
multivariate analysis of data. In this study, the algorithm identified
dependencies beyond traditional linear approaches. WDA is a com-
pletely digital approach in the sense that it employs hard cutoff
values. In future studies, multivariate modeling of clinical data could
potentially produce superior results by employing a combination of
linear and digital methods. A natural extension of WDA would be to
investigate combinations of linear and non-linear discriminatory
functions and evaluate their applicability. We conclude that WDA of
breath VOCs provided a rational and accurate predictor of primary
lung cancer. Because this test identifies persons at high proba-

bility for having lung cancer, it is tempting to speculate that those
individuals would especially benefit from subsequent chest CT
screening.
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